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Abstract 
The need to deliver fast-in-market and right-first-time ultra low emitting vehicles at a 
reasonable cost is driving the automotive industry to invest significant manpower in the 
computer-aided design and optimization of exhaust aftertreatment systems.  

To serve the above goals, an already developed engineering model for the three-way catalytic 
converter is linked with a genetic algorithm optimization procedure, for fast and accurate 
estimation of the set of tunable kinetic parameters that describe the chemical behavior of each 
specific washcoat formulation. The genetic algorithm-based optimization procedure utilizes a 
purpose-designed performance measure that allows an objective assessment of model prediction 
accuracy against a set of experimental data that represent the behavior of the specific washcoat 
formulation over a typical test procedure. 

The identification methodology is tested on a characteristic case study, and the best fit 
parameters produced demonstrate a high accuracy in matching typical test data. The results are 
far more accurate than those that may be obtained by manual or gradient-based tuning of the 
parameters. 

Moreover, the set of parameters identified by the GA methodology, is proven to describe in a 
valid way the chemical kinetic behavior of the specific catalyst.  

The parameter estimation methodology developed, fits in an integrated computer aided 
engineering methodology assisting the design optimization of catalytic exhaust systems, that 
extends all the way through from the model development to parameter estimation, and quality 
assurance of test data. 
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Introduction 
The catalytic converter has been in use for the past 30 years as an efficient and economic 
solution for the legislated reduction of pollutants emitted by passenger car engines. Nowadays, 
emission legislation becomes gradually stricter, in an effort to control air pollution especially in 
urban areas. This trend has led to the development of high efficiency exhaust aftertreatment 
systems, which involve the careful optimization and operation control of the engine, piping and 
catalytic converter for each application. The development of such systems is a complex task that 
is supported by catalytic converter modeling tools. Modern modeling methodologies have 
demonstrated their capacity to be successfully incorporated in the process of exhaust 
aftertreatment systems design [1,2,3,4,5]. 

Among the plethora of catalytic converter models that have appeared in the literature, 
engineering models with reduced reactions schemes and semi-empirical rate expressions appear 
to be better suited to the requirements and constraints of the automotive engineer [6]. Such  
models are proven able to match the accuracy levels and scope of the data of legislated driving 
cycle tests, and provide the engineer with reliable, fast and versatile tools that may significantly 
decrease the cost and development time of new exhaust lines. 

Reduced reaction scheme models employ a limited number of phenomenological reactions that 
contain only initial reactants and final products instead of elementary reactions on the catalyst 
active sites. The complexity and details of the reaction path is lumped into the kinetic rate 
expressions of these models, hence called lumped-parameter models. Rate expressions usually 
follow the Langmuir–Hinselwood formalism, modified by empirical terms. Generally, the form 
of the rate expressions of such models for the reaction between two species a and b is: 
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Thus, the Langmuir–Hinselwood rate expressions determine an exponential (Arrhenius type) 
dependence on temperature while G is an inhibition term, a function of temperature and 
concentrations c of various species that may inhibit the reaction.  

In the above expression, factors A and E (the pre-exponential factor or frequency factor and the 
activation energy) as well as factors K included in the inhibition term G are considered as fitting 
(tunable) parameters. The effect of all phenomena not included explicitly into the model is 
lumped in these terms. Therefore, their values are dependent on the chemical composition of the 
catalyst’s washcoat and must be estimated by fitting the model to a set of experimental data, 
which represent the behavior of the catalyst in typical operating cycles. 

The identification of the model’s tunable parameters is commonly referred to as model tuning. 
The applicability of the lumped parameter models is significantly affected by the successful 
identification of the tunable parameters. Once an accurate parameter identification is succeded, 
the model may be used subsequently for the prediction of the catalytic converter efficiency for 
different geometrical and design characteristics or under different operation conditions. 

Traditionally, fitting of lumped parameter catalytic converter models was accomplished 
manually, a process which is highly empirical, requires experience and does not guarantee the 
success of the undertaking. To circumvent these drawbacks, several efforts have appeared 
towards a systematic methodology for model tuning. All of them are based on the 
transformation of the tuning problem into an optimization problem, where a quantity that 
indicates goodness-of-fit is optimized for the tunable parameters of the model. The goodness-of-
fit quantity may be viewed as a performance measure of the model, since it indicates the 
performance of the model compared to the experimental data. 

Montreuil et al. [7] were the first to present a systematic attempt to tune their steady state three-
way catalytic converter model, using a conjugate gradients optimization procedure. Dubien and 
Schweich [8] presented a conceptually similar methodology to determine the kinetics of simple 
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rate expressions from light-off experiments, employing the downhill simplex method. 
Pontikakis and Stamatelos [9] used the conjugate-gradients technique to determine kinetic 
parameters of a transient three-way catalytic converter model from driving cycle tests. Glielmo 
and Santini [10] presented a simplified three-way catalytic converter model oriented to the 
design and test of warm-up control strategies and tuned it using a genetic algorithm. All of the 
above efforts used a performance measure based on the least-squares error [11] between 
measured and computed results. The work of Glielmo and Santini must be distinguished, 
though, because it is the only one that uses a multi-objective optimization procedure for the 
identification of the model. The genetic algorithm has the potential to avoid local optima in the 
optimization space and thus fit the model to the experimental data with higher accuracy. 

The combination of a lumped-parameters catalytic converter model with an optimization 
procedure for the identification of the model’s parameters is only a first step towards a 
complete, computer-aided methodology for catalytic converter design and optimization, which 
is under continuous development at the authors’ Lab during the last decade. The complete 
methodology is based on the following four-fold framework: 

— Catalytic converter model and software package based on tunable LH kinetics 
approach 

— Kinetic parameter estimation software based on a properly adapted optimization 
procedure 

— Emissions measurements quality assurance methodology and software 

— Design and implementation of critical experiments to improve understanding and 
modeling of catalytic converters 

This work is a continuation of the work presented in [9] and addresses the interaction of the first 
two of the above issues. It is based on the CATRAN three-way catalytic converter (3WCC) 
model, which is already developed and has been validated against a number of real world case 
studies [12]. The performance measure and the optimization algorithm of the procedure are 
updated, in an attempt to approach the problem of computer-aided identification of the kinetic 
model more systematically. Specifically, a performance measure is first formulated that is suited 
to the problem of catalytic converter model tuning in driving cycle tests. Then, a purpose – 
designed genetic algorithm is used to extract a set of tunable parameters that optimizes the 
performance measure to obtain a good fit of the model to the experimental data.  

Model description 
The catalytic converter model used in this study is briefly described below. The model’s 
underlying concept is the minimization of degrees of freedom and the elimination of any 
superfluous complexity in general. A more detailed description of the model and its design 
concept is given in [6].  

The prevailing physical phenomena that occur in the catalytic converter are heat and mass 
transfer in both gaseous and solid phases. They are described by a system of balance equations, 
which is summarized in Table 1. The model features:  

— Transient, one-dimensional heat transfer calculations for the solid phase of the 
converter. 

— Quasi-steady, one-dimensional calculations of temperature and concentration axial 
distributions for the gaseous phase  
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— Simplified reaction scheme featuring a minimum set of Langmuir-Hinselwood-type 
reduction–oxidation (redox) reactions and an oxygen storage submodel for three-way 
catalytic converter washcoats. 

The one-dimensional approximation of the converter neglects any non-uniformity of inlet flow 
profiles. Heat transfer in the solid phase involves a fully transient calculation. Nevertheless, 
quasi-steady heat and mass balances are employed for the gas-phase, since the heat and mass 
accumulation terms in the gas phase are neglected, which is a realistic assumption [13,14]. The 
washcoat is approximated with a solid–gas interface, where all reactions occur. That is, 
diffusion effects are neglected completely, and it is assumed that all catalytically active cites are 
directly available to gaseous-phase species at this solid–gas interface [15,16]. 

For the formulation of the reaction scheme, the three-way catalytic converter will be considered, 
which is designed for spark-ignition engines exhaust. There are two types of heterogeneous 
catalytic reactions that occur in the 3WCC washcoat: Reduction–oxidation (redox) reactions and 
oxygen storage reactions. The complete reaction scheme of the model, along with the rate 
expression for each reaction, is summarized in Table 2. Below, we examine the features of the 
reaction scheme in some more detail. 

Redox reactions take place on the precious metal loading of the washcoat (a combination of Pt, 
Pd, and Rh, depending on the formulation) and involve oxidation of CO, H2 and the complex 
mixture of the hydrocarbons (HC) of the exhaust gas, as well as reduction of nitrous oxides 
(NOx) to N2. Oxygen storage reactions proceed on the Ceria component of the washcoat, where 
3-valent ceria oxide (Ce2O3) is oxidized by O2 and NO to its 4-valent counterpart (CeO2). In its 
turn, CeO2 is reduced by CO and hydrocarbons to Ce2O3.  

In the present model, the oxidation reactions rates of CO and hydrocarbons are based on the 
expressions by Voltz et al. [17], which were originally developed for a Pt oxidation catalyst but, 
interestingly enough, they are still successful, with little variation, in describing the performance 
of Pt:Rh, Pd, Pd:Rh and even tri-metal catalyst washcoats.  

In practice, analyzers measure only the total hydrocarbon content of the exhaust gas and make 
no distinction of the separate hydrocarbon species. Therefore, for modeling purposes, the total 
hydrocarbon content of the exhaust gas is divided into two broad categories: easily oxidizing 
hydrocarbons (“fast” HC), and a less-easily oxidizing hydrocarbons (“slow” HC). Throughout 
this work, it is assumed that the exhaust hydrocarbon consisted of 85% “fast” HC and 15% 
“slow” HC. This is a rough approximation introduced in lack of more accurate data but, 
according to our experience, it gives satisfactory result. Both fast and slow hydrocarbons are 
represented as CH1.8, since average ratio of hydrogen to carbon atoms in the exhaust gas is 1.8. 
Thus, the two hydrocarbons are distinguished in the model only by the difference in the kinetic 
parameters. 

For the reaction between CO and NO we employ a simple Arrhenius-type reaction rate. Finally, 
hydrogen oxidation is also included in the model; the Voltz rate expression is used for H2 
oxidation as well. 

Oxygen storage is taken into account by the model by four reactions for Ce2O3 oxidation by O2 
and NO, and CeO2 reduction by CO and HC. The model uses the auxiliary quantity ψ to express 
the fractional extent of oxidation of the oxygen storage component. It is defined as: 
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The extent of oxidation ψ is continuously changing during transient converter operation. Its 
value is affected by the relative reaction rates of reactions 6–9. The rates of reactions are 
expected to be linear functions of ψ for CeO2 reduction and (1−ψ) for Ce2O3 oxidation. The rate 
of variation of ψ is the difference between the rate that Ce2O3 is oxidized and reduced: 
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The above equation is solved analytically for ψ at each node along the catalyst channels. The 
quantity Ψcap is the total oxygen storage capacity and its value may be estimated by the content 
of Ceria in the washcoat. In this work, the value of Ψcap is approximated to 600 mol O2/mol Ce. 

Tuning procedure 

General 

The reaction rate expressions introduce into the catalytic converter model a set of parameters 
that have to be estimated with reference to a set of experimental data. In the present model, the 
set of tunable parameters is formed by the pre-exponential factors Ak that are included in the 
reaction rates rk.  Our objective is to fit them against experimental data from a routine driving 
cycle test. 

In concept, the activation energy Ek of each reaction and the set of terms Ki, included in the 
Voltz inhibition term G, may also be considered as tunable parameters; we do not attempt to 
tune them though. The activation energy of each reaction is approximately known from previous 
experience and their variation over different washcoat formulations is not significant. 
Furthermore, the Voltz inhibition factor without modification in its term has been found to 
consistently give satisfactory results for a wide range of washcoats. Besides, any attempt to tune 
the activation energy or the inhibition term of any reaction would require data of increased 
accuracy, which is not provided by driving cycle tests and may only be feasible with specialized 
experiments. 

Additionally, the kinetic constants of H2 oxidation are also not tuned in this work. The H2 
content of the exhaust gas is low and is not known accurately because it may not be measured 
and has to be implicitly computed [18]. Therefore, we fix their values as equal to the values of 
CO oxidation constants. This is a practice suggested from previous experience. Thus, there are 
nine tunable parameters in total, one for each reaction except of the reaction of H2.  

Since the problem of model tuning is a parameter-fitting problem, it may be tackled as an 
optimization problem. This involves the development of two components: 

1. A performance measure, which qualitatively assesses the goodness-of-fit of the model 
for each possible set of parameter values. 

2. An optimization procedure, which finds a set of tunable parameters giving an optimum 
value for the performance measure, i.e. yields in modeling results that are as close to 
the measured results as possible. 

The most usual performance measure used in the bibliography is based on the least-squares 
error between measured and computed instantaneous concentrations of pollutants at the 
converter’s outlet. Here, we modify a new performance measure that is more beneficial for 
optimization purposes and may also be used independently as an objective, generic measure to 
compare the performance of different models. 

The performance measure was optimized using a genetic algorithm, because previous 
experience has shown that the problem of model parameter estimation is multimodal, and the 
genetic algorithm is a powerful technique for multimodal optimization. The genetic algorithm 
was properly adapted to the problem at hand. The details of performance measure and genetic 
algorithm formulation are presented below. 
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Formulation of the performance measure 

The performance measure that is formulated below exploits the information of species 
concentrations measurements at the inlet and the outlet of the catalytic converter. Specifically, it 
is based on the conversion efficiency Ej for a pollutant j. Herein, we take into account the three 
legislated pollutants, thus j = CO, HC, NOX. 

To account for the goodness of computation results compared with a measurement that spans 
over a certain time horizon τ , an error e for each time instance must be defined. The latter 
should give the deviation between computation and measurement for the conversion efficiency 
E. Summation over time should then be performed to calculate an overall error value for the 
whole extent of the measurement. Here, the error is defined as: 

EEe ˆ−= . (4) 

Absolute values are taken to ensure error positiveness. This error definition also ensures that 
10 ≤≤ e , since it is based on conversion efficiency.  

The error between computation and measurement is a function of time and the tunable 
parameter vector: ( )ϑ;tee = , where ϑ  is the formed by the pre-exponential factor of each 
reaction of the model: 
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We name performance function ( ) ( )( )ϑϑ ;; teftf =  a function of the error e, which is 
subsequently summed over some time horizon τ  to give the performance measure F. Here, the 
performance function is defined as: 
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Time t take discrete values, tn = n∆t, with ∆t being the discretization interval which corresponds 
to the frequency that data is measured. The quantity emax is the maximum error between 
computation and measurement, and it is defined as 
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The performance measure can be subsequently formed using some function of the sum of the 
performance function over time: 
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In this work, we define the performance measure F as the mean value of the performance 
function over the time period of interest: 
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The performance measure defined in (8) is used for the assessment of the performance of each 
of the three pollutants CO, HC, NOX. The total performance measure is computed as the mean 
of these three values: 

3
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The above performance measure presents advantageous features compared to the classical least-
squares performance measure: 

— It ranges between two, previously known, finite extreme values. Extremes correspond 
to zero and maximum deviation between calculation and experiment. 

— The extrema of the performance measure are the same for all physical quantities that 
may be used and all different measurements where the performance measure may be 
applied. That is, the performance measure is normalized so that its extrema do not 
depend on the either the measured quantities or the experimental protocol. 

It should be noted here that, because of the above properties, this performance measure may be 
used as a general measure to compare the model’s performance under different cases studies, or 
compare alternative models for a single case study. That is, it is a generic quantitative measure 
to assess the model’s performance. This should be contrasted to the usual practice for model 
assessment, which is simply based on inspection. Although a visualization procedure is 
necessary to gain insight to the model’s results, it is a subjective criterion. A least-squares 
performance measure, on the other hand, depends on the measurement at hand and is not helpful 
for comparison purposes. A normalized performance measure such as the one defined above 
eliminates this problem and should provide more insight to model assessment. 

From the optimization point of view, normalization of the performance measure is required 
because the total performance measure F is computed as the mean of FCO, FHC and FNOx. If each 
of the individual performance measures were not normalized by definition, they would take 
values of different points of magnitude. Then, arbitrary scaling factors (weights) would be 
necessary before taking the average to compute F. With the current performance measure 
definition, this is avoided. 

Optimization procedure 

Having defined the performance measure for the model, the problem of tunable parameter 
estimation reduces in finding a tunable parameter vector ϑ  that minimizes F. Owing to the 
multimodal character of the problem, a genetic algorithm has been employed for the task. Since 
genetic algorithms are maximization procedures, the problem is converted into a maximization 
problem for F', defined as: F'=1−F. 

Summarizing the above, the mission of the genetic algorithm is to solve the following problem: 
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This is a constraint maximization problem, since the components of vector ϑ  are allowed to 
vary between two extreme values, i.e. max,min, iii ϑϑϑ ≤≤ .  

The genetic algorithm is a kind of artificial evolution, where a population of solutions evolves 
similarly to the nature’s paradigm: Individual solutions are born, reproduce, are mutated and die 
in a stochastic fashion that is nevertheless biased in favor of the most fit individuals [19]. The 
implementation of the algorithm that has been developed in this work takes the following steps: 

  1. Initialization. A set of points in the optimization space is chosen at random. This is the 
initial population of the genetic algorithm, with each point (each vector of tunable 
parameters) corresponding to an individual of the population. 

  2. Fitness calculation. The fitness of each individual in the population is computed using 
(11). It should be noticed that fitness calculation requires that the model be called for 
each individual, i.e. as many times as the population size.  
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  3. Selection. Random pairs of individuals are subject to tournament, that is, mutual 
comparison of their fitnesses [20]. Tournament winners are promoted for 
recombination.  

  4. Recombination (mating). The simulated binary crossover (SBX) operator [21] is 
applied to the couples of individuals that are selected for recombination (parents). The 
resulting chromosomes are inserted in the children population. 

  5. Mutation. A small part of the population is randomly mutated, i.e. random parameters 
of the chromosomes change value in a random fashion [22]. 

  6. Original parent population is discarded; children population becomes parent 
population. 

  7. Steps 3 to 6 are repeated for a fixed number of generations or until an acceptably fit 
individual has been produced. 

Genetic algorithms are not black-box optimization techniques. On the contrary, a genetic 
algorithm should be adapted by the user to the target problem [20]. There are a number of 
design decisions and parameters that influence the operation, efficiency and speed of the genetic 
algorithm. The present implementation is summarized in Table 3. The genetic algorithm is a 
real-coded genetic algorithm and uses the simulated binary crossover (SBX) [21] for the mating 
and recombination of individuals.  

The SBX operator works directly on the real-parameter vector that represents each individual, 
thus eliminating the need for a real-to-binary encoding-decoding required in binary encoded 
genetic algorithm. SBX operator also works on arbitrary precision, which should be contrasted 
to the finite precision of binary encodings. 

The randomized nature of the genetic algorithm enables it to avoid local extrema of the 
parameter space and converge towards the optimum or a near-optimum solution. It should be 
noted, though, that this feature does not guarantee convergence to the global optimum. This 
behavior is common to all multimodal optimization techniques and not a specific genetic 
algorithm characteristic. 

Application case study 
The validity of the approach that is described above is assessed in a real-world application case. 
Manual tuning of the model is originally performed, and the results are subsequently compared 
with the identification results produced by the genetic algorithm. It is found that the genetic 
algorithm manages to find a set of tunable parameters that fits the experimental data with much 
higher accuracy compared to the manual efforts. In order to check the usability of the GA-tuned 
model, we apply it to a second set of driving cycle data, obtained with a catalyst with 
significantly reduced size. It is found that the model is able to predict the efficiency of the 
second catalyst successfully. 

Specifically, in this application example, we are going to employ a set of measurements of 
emissions upstream and downstream a Pt:Rh (5:1) catalyst installed on a 1.8 l gasoline engine, 
that has followed a simulated New European Driving Cycle test on the computer controlled 
engine bench. The catalytic converter has a circular cross-section of 127 mm diameter and it is 
consisted of 2 beds with a total length of 203 mm. CO, HC NOx, O2 and CO2 analyzers measure 
the exhaust gas content upstream and downstream the catalyst. Figure 1 presents an overview of 
the emissions measurements setup. 

Figure 2 presents a summary of the measured results after preprocessing with the data 
consistence and error checking routines [23]. Evidently, the catalytic converter light-off occurs 
at about 50 s after the beginning of the measurement. After light-off, and up to about 800 s, 
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emissions are almost zeroed. The first 800 s correspond to the urban phase of the driving cycle. 
During this phase, only few emission breakthroughs occur. Comparatively more pollutants are 
emitted in the period from 800 to 1180 s (which corresponds to the extra-urban phase of the 
NEDC), because of the higher space velocity of the exhaust gas.  

It is important to note that, because of the very low emission standards, it does not suffice to 
predict the light-off point of the catalyst. Increased accuracy is demanded during the whole 
extent of the cycle test. The low levels of concentrations at the catalyst exit, compared to the 
corresponding concentrations at the inlet, further complicate the undertaking. Its success is thus 
heavily dependent on both the careful model formulation and the accurate tunable parameter 
identification.  

Proceeding to the model identification, we present in Table 4: (a) the set of kinetics parameters 
of the model and (b) their values tuned manually and by the genetic algorithm.  

In principle, the kinetic parameters are 21 in total: One parameter for the oxygen storage 
capacity, and 10 couples of parameters (A and E) for the 10 reactions incorporated in the 
reaction scheme.  

As previously discussed, not all kinetic parameters are tuned. The activation energies are more 
or less known from previous experience [24]. They could be varied a little, but this is not 
necessary since the rate depends on both A and E and any small difference can be compensated 
by respective modification of A. The oxygen storage capacity is also not tuned, since its 
approximate magnitude is estimated based on the washcoat composition (Ce, Zr) [25], and is 
also checked by characteristic runs of the code. Finally, the H2 oxidation kinetics is assumed to 
be approximately equal to that of CO oxidation. 

Thus, we are left with nine pre-exponential factors to be tuned: 4 reactions of gaseous phase 
species on the Pt surface, and another 5 reactions on the Ceria – Zirconia components of the 
washcoat. The manual tuning that was initially performed gives the results that are illustrated in 
Figures 3 and 4. Manual tuning was performed following a trial-and-error procedure and was 
mainly aided by previous experience with similar catalysts. Figure 3 gives the cumulative 
emissions for all pollutants. Although the computed total mass of pollutants matches the 
measurements, Figure 3 imply low accuracy for the prediction of instantaneous emissions, 
especially for the CO. This is better shown in Figure 4, where the computed instantaneous CO 
concentrations at the outlet can only qualitatively fit the measurement. 

The model’s accuracy concerning instantaneous emissions is significantly improved when the 
model is fitted using the genetic algorithm. The comparison of computed vs. measured 
cumulative emissions is illustrated in Figure 5. The form of the curves for all three pollutants 
matches the measured data much more closely, which indicates that the instantaneous emissions 
of the model are fitted with good accuracy. The computed and measured instantaneous 
emissions for CO, HC and NOx are compared in Figures 6, 7 and 8 respectively. 

It must be noted that the fit of the model is more successful for the CO and HC curves than for 
the NOx curve. This is mainly attributed to the Voltz inhibition term for the CO and HC 
oxidation reactions. On the contrary, no appropriate inhibition term has been extracted for the 
reactions that involve NOx. Furthermore, comparing the fit for CO and HC curves, we may 
readily find that HC fit is inferior. This is expected since the complicated mixture of 
hydrocarbons contained in the exhaust gas is approximated by only two components, a “fast” 
and a “slow” hydrocarbon. Bearing in mind that this is a very gross approximation, the model 
may be considered fairly satisfactory. 

The evolution of the genetic algorithm population of solutions is indicative of the problem 
difficulty and explains the limited success of manual tuning or tuning that uses gradient-based 
methods. To illustrate the evolution process, a graph of the evolution of maximum and average 
fitness of the population is presented in Figure 9. The genetic algorithm quickly improves the 
maximum performance measure solution at the beginning of the run. Then, evolution is slower 
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and after some point, it completely stalls. This indicates that the genetic algorithm population 
has converged to a specific attraction basin of the optimization space and not much 
improvement may be achieved. At this point, the algorithm is stopped. The specific computation 
required about 72 hours on a 2.4 GHz Pentium 4 computer.  

It may be noted that the absolute value of the performance measure does not vary much during 
the GA run. This is a property of the performance measure formulation but also indicates the 
multi-modality of the problem, since it appears that many combinations of kinetic parameters 
leads to the same overall performance of the model. 

The spread of individuals in the 20th, the 45th and the last (135th) generation is given in Figures 
10, 11 and 12 respectively. The individuals are sorted in descending order according to their 
performance measure. 

Figure 10 visualizes the spread of the kinetic parameters in the population of the genetic 
algorithm near the beginning of the procedure. The kinetic parameters are allowed to vary in 
certain intervals that are induced based on previous experience and are consistent with their 
physical role in the respective reactions. The different kinetic parameters pertaining to reactions 
that occur on the three distinct catalytic components of the washcoat (in our example, Pt, Rh 
and Ce) fall in three distinct intervals. 

Figure 11 gives the spread of individual solutions in the 45th generation of the population. 
Apparently, the population has started converging for the pre-exponential factors of some 
reactions. This indicates that the kinetics of these reactions influence the quality of the model fit 
(and thus the performance measure value) much more significantly than the rest of the reactions. 

Figure 12 presents the last population of the GA run. It is evident that the parameters for the 
oxidation of “slow” hydrocarbons with oxygen on Pt or with stored oxygen do not converge, 
whereas the rest of the parameters show clear signs of convergence. This could be attributed to 
the fact that the “slow” hydrocarbons are only 15% of the total hydrocarbon content and thus 
influence the total hydrocarbon efficiency of the catalyst much less compared to the “fast” 
hydrocarbons. The same absence of convergence is noticed for the kinetics of CO+NO reaction, 
whereas the complementary reaction of Ceria + NO shows clear signs of convergence. This fact 
hints to a lack of sensitivity of the model regarding the above three reactions. One should not 
deduce at this early investigation point, that these reactions are less important than the rest to the 
model’s accuracy and predictive ability. Experience shows that further reduction of the number 
of reactions leads to an observable deterioration of the model fitting ability.  

For comparison purposes, the best set of kinetic parameters values derived at the three 
characteristic generations of the GA evolution are presented, along with the manually derived 
set, in Figure 13.  

The above discussion should make apparent that the parameter identification methodology 
developed gives significant feedback also to the reaction modeling. This is a subject of 
continuing investigation.   

As a next step in the evaluation of the parameter identification methodology, the kinetic 
parameters derived by the genetic algorithm for the full scale converter, are applied in the 
prediction of the behavior of a reduced size converter with the same washcoat formulation and 
loading. The model’s prediction is checked against experimental results obtained with a 
cylindrical converter of 120 mm diameter and 60 mm length. The results are presented in  
Figure 14 in the form of cumulative CO, HC and NOx emissions.  

The results are indicative of the model’s predictive ability of the 1D model for typical quality 
test data. As a typical example of the model’s performance, the computed instantaneous HC 
emissions are compared to the experimental ones in Figure 15. Evidently, the model prediction 
continues to be acceptably close to the experimental data, both qualitatively and quantitatively, 
which further supports the validity of the kinetic model approach. 
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Conclusions 
• A genetic algorithm methodology was developed for the identification of the kinetic 

submodel of a previously developed 3WCC model. This is a one-dimensional model for 
the heat and mass transfer in the catalytic converter that features a reduced kinetics 
scheme.  

• This scheme involves rate expressions which contain a limited number of apparent 
kinetic parameters that may be viewed as fitting parameters. Their values are identified 
in order to fit a set of experimental data that represent the behaviour of the specific 
washcoat formulation over a typical test procedure. 

• In this paper, a complete identification methodology for the above problem is 
formulated in two steps. First, a performance measure is defined that is suitable for the 
assessment of the model’s performance in fitting the data. Second, a genetic algorithm 
is employed that uses the performance measure as an objective function. The genetic 
algorithm searches the parameter space to find the optimal set of parameters producing 
the best fit to the data. 

• The identification methodology is tested on a characteristic case study, and the best fit 
parameters produced demonstrate a high accuracy in matching the test data describing 
the behavior of a specific catalyst installed on a 1.8 l passenger car engine tested 
according to the NEDC procedure. The results are far more accurate than those that may 
be obtained by manual or gradient-based tuning of the parameters, because the search 
space is highly multimodal, which causes non-stochastic search procedures to get 
trapped to local optima. 

• Moreover, the set of parameters identified by the GA methodology, is proven to 
describe in a valid way the chemical kinetic behavior of the specific catalyst. This is 
proven by an application of the specific set of kinetic parameters, to predict the 
behavior of a reduced size converter with the same catalyst formulation. The prediction 
accuracy is remarkable if one takes into account the statistical variation of the 
performance of such a complex system.  

• The parameter estimation methodology developed, is completing a previously 
developed systematic computer aided engineering methodology assisting the design 
optimization of catalytic exhaust systems, that extends all the way through from the 
model development to parameter estimation, and quality assurance of test data. 
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List of Symbols 
aj,k stoichiometric coefficient of species j in reaction k 
A Pre-exponential factor of reaction rate expression, [mol·K/(m3s)] 
c Species concentration, [–] 
cp Specific heat capacity, [J/(kg·K)] 
e Error between computeration and experiment, [–] 
E 1. Activation energy of reaction rate expression, [J] 
 2. Conversion efficiency, [–] 
f performance function, [–] 
F performance measure, [–] 
G Inhibition term (Table 2), [K] 

H∆  Molar heat of reaction, [J/mol] 
h Convection coefficient, [W/(m2s)] 
k Thermal conductivity, [W/(m·K)] 
km mass transfer coefficient, [m/s] 
K Inhibition term (Table 2), [–] 
m&  Exhaust gas mass flow rate, [kg/s] 
M Molecular mass, [kg/mol] 
Qamb Heat transferred between converter and ambient air, [J/(m3·s)] 
r Rate of reaction, [mol/m3s] 
Rg Universal gas constant, [8.314 J/(mol·K)] 
R Rate of species production/depletion per unit reactor volume, [mol/(m3s)] 
S Geometric surface area per unit reactor volume, [m2/m3] 
t Time, [s] 
T Temperature, [K] 
uz Exhaust gas velocity, [m/s] 
z Distance from the monolith inlet, [m] 

Greek Letters 

γ  Catalytic surface area per unit washcoat volume, [m2/m3] 

δ  washcoat thickness, [m] 
ε  emissivity factor (radiation), [m−1] 
ϑ  tunable parameters vector 
ρ  density, [kg/m3]  

σ  Stefan–Boltzmann constant, [W/(m2·T4)] 
τ  duration of an experiment, [s] 
ψ  fractional extent of the oxygen storage component, [–] 

capΨ  washcoat capacity of the oxygen storage component, [mol/m3] 

Subscripts 
amb ambient 
g gas 
i parameter index 
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j species index 
k reaction index 
n time index 
in inlet  
s 1. solid, 2. solid–gas interface 
z axial direction 
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 Reaction Rate expression 

 Oxidation reactions  

1 22 CO0.5O+CO →  
G

cceA
r OCO

TRE g
2

1
1

1

−

=  

2 OH0.5O+H 222 →  
G

cceA
r OH

TRE g
22

2
2

2

−

=  

3  OH9.0COO45.1(FAST)CH 2221.8 +→+  
G

cceA
r OHCfast

TRE g
2

3
3

3

−

=  

4  OH9.0COO45.1(FAST)CH 2221.8 +→+  
G

cceA
r OHCslow

TRE g
2

4
4

4

−

=  

 NO reduction   

5 22 N2CO2NO2CO +→+  NOCO
TRE cceAr g5

55
−=  

 Oxygen storage   

6 2232 2CeOO5.0OCe →+  ( )ψ−= − 1
2

6
66 O

TRE ceAr g  

7 2232 N5.02CeONOOCe +→+  ( )ψ−= − 17
77 NO

TRE ceAr g  

8 2322 CΟCeCΟ+2CeΟ Ο+→  ψCO
TRE ceAr g8

88
−=  

9 
( )

OH9.0COO1.9Ce

CeO8.3SLOWCH

2232

21.8

++→

→+
 ( )ψHCsHCf

TRE cceAr g += − 9
99  

10 
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CeO8.3SLOWCH

2232
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 ( )ψHCsHCf
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1010  

 Inhibition term  
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4
22
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21 111 NOTHCCOTHCCO cKccKcKcKTG ++++= ,  where: 

( ) 4...1,exp =−= iTREAK giii , and HCsHCfTHC ccc +=  

 A1 = 65.5 A2 = 2080 A3 = 3.98 A4 = 4.79·105 

 E1 = −7990 E2 = −3000 E3 = −96534 E4 = 31036 

 Auxiliary quantities 

 
322

2

OCe molesCeO moles2
CeO moles2

+×
×

=ψ , 
capcap Ψ
r

Ψ
rr

dt
d 8109 +

+
−=

ψ  

Table 2. Reaction scheme and rate expressions of the model 
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Encoding type real parameter encoding 

Crossover operator simulated binary crossover (SBX) 

Mutation operator random mutation 

Population size 100 

Crossover probability 0.6 

Mutation probability 0.02 

Parameter range 255 1010 << A  

Table 3. Parameters of the genetic algorithm 
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  E A Ψcap 

 Reaction Fixed 
Value 

Manual 
tuning GA tuning Fixed 

Value 

1 22 CO0.5O+CO →  90000 1019 4.89.1020  

2 OH0.5O+H 222 →  90000 1019 4.89.1020  

3  OH9.0COO45.1(FAST)CH 2221.8 +→+  95000 2.1019 3.61.1020  

4  OH9.0COO45.1(SLOW)CH 2221.8 +→+  120000 5.1019 1.83.1017  

5 22 N2CO2NO2CO +→+  90000 4.1014 1.54.1011  

6 2232 2CeOO5.0OCe →+  90000 2.1010 2.94.1009 

7 2232 N5.02CeONOOCe +→+  90000 3.109 4.68.1010 

8 2322 CΟCeCΟ+2CeΟ Ο+→  85000 2.109 7.85.109 

9 
OH9.0COO.9Ce1

CeO8.3)FAST(CH

2232

28.1

++→

→+
 85000 9.1010 1.35.1010 

10 
( )

OH9.0COO1.9Ce

CeO8.3SLOWCH

2232

21.8

++→

→+
 85000 1010 2.43.1013 

600 

Table 4. Values of activation energy, tunable pre-exponential factors (manual estimates -versus 
values determined by the genetic algorithm) and oxygen storage capacity value inserted 
in the model.  
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Figures Captions 
 
Figure 1 Emissions measurement setup 

Figure 2 Measured instantaneous CO, HC and NOx emissions at converter inlet and exit, over 
the 1180 seconds duration of the cycle: 1.8 Litre-engined passenger car equipped with a 
2.4 litre underfloor converter with 50 g/ft3 Pt:Rh catalyst 

Figure 3 Manual tuning: comparison of computed vs. measured cumulative emissions for CO, 
HC, NOx (full size converter). 

Figure 4 Manual tuning: Comparison of computed vs. measured CO instantaneous emissions 
(full size converter). 

Figure 5 Computer aided tuning: comparison of computed vs. measured cumulative emissions 
for CO, HC, NOx (full size converter). 

Figure 6 Computer aided tuning: comparison of computed vs. measured instantaneous CO 
emissions (full size converter). 

Figure 7 Computer aided tuning: comparison of computed vs. measured instantaneous HC 
emissions (full size converter). 

Figure 8 Computer aided tuning: comparison of computed vs. measured instantaneous NOx 
emissions (full size converter). 

Figure 9 Evolution of the genetic algorithm: Maximum and average population fitness during 
the first 135 generations 

Figure 10 Spread of genetic algorithm population at the 20th generation 

Figure 11 Spread of genetic algorithm population at the 45th generation 

Figure 12 Spread of genetic algorithm population at the last (135th) generation 

Figure 13 Comparison of manually derived kinetics and kinetics identified at the 20th, 45th and 
135th generation of the genetic algorithm run. 

Figure 14 Application of the kinetic parameters identified by the genetic algorithm for the full-
sized converter, to predict the behavior of the reduced size converter. Comparison of 
computed vs. measured cumulative emissions for CO, HC, NOx. 

Figure 15 Application of the kinetic parameters identified by the genetic algorithm for the full-
sized converter, to predict the behavior of the reduced size converter. Comparison of 
computed vs. measured instantaneous HC emissions. 
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